Depth-profiling X-ray photoelectron spectroscopy (XPS) analysis of interlayer diffusion in polyelectrolyte multilayers.

نویسندگان

  • Jonathan B Gilbert
  • Michael F Rubner
  • Robert E Cohen
چکیده

Functional organic thin films often demand precise control over the nanometer-level structure. Interlayer diffusion of materials may destroy this precise structure; therefore, a better understanding of when interlayer diffusion occurs and how to control it is needed. X-ray photoelectron spectroscopy paired with C60(+) cluster ion sputtering enables high-resolution analysis of the atomic composition and chemical state of organic thin films with depth. Using this technique, we explore issues common to the polyelectrolyte multilayer field, such as the competition between hydrogen bonding and electrostatic interactions in multilayers, blocking interlayer diffusion of polymers, the exchange of film components with a surrounding solution, and the extent and kinetics of interlayer diffusion. The diffusion coefficient of chitosan (M = ∼100 kDa) in swollen hydrogen-bonded poly(ethylene oxide)/poly(acrylic acid) multilayer films was examined and determined to be 1.4*10(-12) cm(2)/s. Using the high-resolution data, we show that upon chitosan diffusion into the hydrogen-bonded region, poly(ethylene oxide) is displaced from the film. Under the conditions tested, a single layer of poly(allylamine hydrochloride) completely stops chitosan diffusion. We expect our results to enhance the understanding of how to control polyelectrolyte multilayer structure, what chemical compositional changes occur with diffusion, and under what conditions polymers in the film exchange with the solution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Advanced Depth Profiling Characterization of Mixed Organic/Inorganic Layers Using X-ray Photoelectron Spectroscopy (XPS) and a Combined Monatomic and Gas Cluster Ion Source (MAGCIS)

Organic electronic devices are becoming increasingly important in a wide variety of applications. These nano-structured devices are typically composed of complex thin/ultrathin multilayers of novel organic or organometallic compounds, along with inorganic materials. The overall electronic behavior of these devices is strongly influenced by the electronic properties and chemical compositions of ...

متن کامل

Determination of lithium-ion distributions in nanostructured block polymer electrolyte thin films by X-ray photoelectron spectroscopy depth profiling.

X-ray photoelectron spectroscopy (XPS) depth profiling with C60(+) sputtering was used to resolve the lithium-ion distribution in the nanometer-scale domain structures of block polymer electrolyte thin films. The electrolytes of interest are mixtures of lithium trifluoromethanesulfonate and lamellar-forming polystyrene-poly(oligo(oxyethylene)methacrylate) (PS-POEM) copolymer. XPS depth profilin...

متن کامل

Analysis of ultra-thin HfO(2)/SiON/Si(001): comparison of three different techniques.

Composition depth profiling of HfO(2) (2.5 nm)/SiON (1.6 nm)/Si(001) was performed by three diffetent analytical techniques: high-resolution Rutherford backscattering spectroscopy (HRBS), angle-resolved X-ray photoelectron spectroscopy (AR-XPS) and high-resolution elastic recoil detection (HR-ERD). By comparing these results we found the following: (1) HRBS generally provides accurate depth pro...

متن کامل

Compositional depth profile analysis of coatings on hard disks by X-ray photoelectron spectroscopy and imaging

A hard disk medium is typically composed of several layers including the magnetic recording layer, a buffer layer, as well as a wear protective layer. In the work presented here, the hard disks analysed have a total of five layers with the uppermost layer being the lubricant. The second layer is diamond like coating and this is followed by the magnetic layer consisting of an alloy of cobalt and...

متن کامل

Effect of Fluorination Treatment on Cotton Wettability, Dyeability and Mechanical Properties and Characterization of Surface Changes by XPS

Cotton fabric was treated with fluorine gas in a nitrogen atmosphere. The effect of fluorination treatments on wettability, whiteness index, dyeability and mechanical properties of cotton fabrics were assessed. Kawabata analysis shows that fluorination treatment increases shear stiffness G, shear hysteresis 2HG5, bending stiffness B and overall fabric stiffness Koshi on cotton fabric. Fluorinat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 110 17  شماره 

صفحات  -

تاریخ انتشار 2013